Single Active Site Catalysis of the Successive Phosphoryl Transfer Steps by DNA Transposases Insights from Phosphorothioate Stereoselectivity
نویسندگان
چکیده
The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase. The results suggest that the first three steps required for double-strand cutting at the transposon end proceed as a succession of pseudo-reverse reaction steps while the 3' end of the transposon remains bound to the same side of the active site. However, the mode of substrate binding to the active site changes for the cut transposon 3' end to target DNA strand joining. The phosphorothioate stereoselectivity of the corresponding steps of phage Mu transposition and HIV DNA integration matches that of Tn10 reaction, indicating a common mode of substrate-active site interactions for this class of DNA transposition reactions.
منابع مشابه
A single active site in the mariner transposase cleaves DNA strands of opposite polarity
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hai...
متن کاملCatalysis of site-specific recombination by Tn3 resolvase.
The active-site interactions involved in the catalysis of DNA site-specific recombination by the serine recombinases are still incompletely understood. Recent crystal structures of synaptic gammadelta resolvase-DNA intermediates and biochemical analysis of Tn3 resolvase mutants have provided new insights into the structure of the resolvase active site, and how interactions of the catalytic resi...
متن کاملThe Three Chemical Steps of Tn10/IS10 Transposition Involve Repeated Utilization of a Single Active Site
Nonreplicative transposition by Tn10/IS10 involves three chemical steps at each transposon end: cleavage of the two strands plus joining of one strand to target DNA. These steps occur within a synaptic complex comprising two transposon ends and monomers of IS10 transposase. We report four transposase mutations that individually abolish each of the three chemical steps without affecting the syna...
متن کاملMicroReview Tn 5 as a model for understanding DNA transposition
Tn 5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have ...
متن کاملMechanism of IS200/IS605 Family DNA Transposases: Activation and Transposon-Directed Target Site Selection
The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 101 شماره
صفحات -
تاریخ انتشار 2000